Humanity Generates 1.3 Billion Tons of Trash Per Year Worldwide

S.E.C.A.M.P.

The Four Rs:

Review, Reduce, Reuse, Recycle

Click video to learn what we can do>

 

S.E.C.A.M.P.

Click video to hear R. Charles Murray, CEO> talk about his commitment to the future

“If man doesn’t learn to treat the oceans and the rain forest with respect, man will become extinct.”

— Peter Benchley

 

How Plasma can fix our waste problem

Tom Whitton | TEDxMontreal

Click Link to view video

 

Plastics Sustainability: Myths, facts, and a path to a circular economy sustainability

By Bruce Welt, PHD

Click here to read article

 

Is Plastic Packaging Inherently
bad For The Environment?

By David Roberge

Click here to read article

 

Syngas: A Transformative Technology for Waste Circularity

by Anne Marie Mohan

Click here to read article

 

 

Our Commitment to the Environment

We are members of alliances, conservancies, societies and enjoy our world. Nature inspires us with its beauty and its magnificence, and we are deeply committed to conservation. Because we want to preserve our world for generations to come, we try at all times to reduce waste of resources and energy, to reuse and recycle packaging run on our machines.

Founded in 1996 our S.E.C.A.M.P.™ project was an industry first S.E.C.A.M.P™ is a 6 point strategy that relates to using less energy or clean energy, fewer packaging materials, and reduce costs in the manufacturing, warehousing and distribution of StandUp pouches, vials and trays.

  1. Make multiple components and parts at one time to get efficiencies of scale including modules for the assembly of the machine.
  2. Buy electricity and other utilities (gas) from environmental conscious suppliers who do not pollute the air with “greenhouse” gases.
  3. Turn air compressors off after use and start changing pneumatic designs that allow machines to run at a lower psi. 70 psi is our standard.
  4. Use stainless steel where possible and eliminate all painting in the machinery process.
  5. Reduce electric cables and use more wireless technology.
  6. Install our patented ControlSmart™ data monitoring camera type system to prevent the production of out-of-specification products at the customer.

In a recent study, the overall environmental impact of a pouch vs a bottle was analyzed and below are some of the findings.

Waste: In a comparison between a 187 ml bottle and a 187 ml pouch, it was found that the pouch generated  40% less waste.

Weight: The pouch weighs 20 times less than the bottle and uses far less material and takes up far less space than a bottle.

Energy savings: The pouch uses far less energy to make than a bottle.

Lower carbon DIOXIDE footprint: The pouch has a much lower CO2 footprint than a bottle and if incinerated zero carbon footprint.

Recycling: The pouch can be incinerated and the resultant energy captured for new usage.

Sustainability is Good For Business and the Planet

We believe that when when you use business as a force for good, everyone involved wins. 79% of consumers want products that are in sustainable packaging and they want to know that your company is working towards improving the world not destroying it for profit. We believe that by operating our business using sustainable goals we have innovated and built worldwide market

We are agents for change inspiring to build a better world.

  • Last year Americans spent nearly $11 billion on 8 billion plus gallons of bottled water, and then discarded over 22 billion empty plastic bottles in the trash.
  • 200,000 people a day are moving to cities from environments that no longer support them
  • Lighting accounts for 25 percent of North American electricity use the Earth’s limited supply of natural resources will only be able to sustain 10 billion humans by 2100, bad news is, a world that already feeds 5.9 billion people is struggling to cope
  • We use over 80,000,000,000 Aluminum soda cans every year the wind in North Dakota alone could produce a third of that state’s electricity
  • A single degree of over-heating or overcooling on an average college campus costs $100,000 a year
  • Recycling 1 ton of paper saves 17 trees, 2 barrels of oil (enough to run the average car for 1,260 miles) 4,100 kilowatts of energy (enough power for the average home for 6 months), 3.2 cubic yards of landfill space, and 60 pounds of air pollution
  • The U.S. is 5% of the world’s population but uses 25% of its natural resources Florida residents dump enough trash every two weeks to fill the Astrodome and that has led FPL to invest in 14 incinerators and recover energy, and other products, from garbage
  • American consumers and industry throw away enough Paper Waste Aluminum in a year to rebuild our entire airplane commercial fleet

Problems

Fuel prices will rise • Energy demands increase daily
Oil problems on supply and price • Global energy crisis can occur at any time

Solutions

Harness solar energy • Zero net energy consumption

Create energy efficient/energy positive environments

Use alternate fuels • Use alternate transportation

Use chemical-free cleaning products

Implement The Four Rs:

Review, Reduce, Reuse, Recycle

Zero landfill / No carbon dioxide footprint

Plasma Gasification economy sustainability for packaging

What do we do to help

Print on both sides of any print job • Utilize old printed paper for scrap paper

Re-use all corrugated boxes for shipping spare parts

Turn off all lights • Use natural lighting wherever possible

Recycle all paper, cans and bottles • Do not use Styrofoam plates or cups

Turn off all monitors and computers at the end of the day

Do not print e-mails that have pages already printed • Use compact fluorescent lights • Use programmable thermostats

Use water-saving restrooms • Use only Pouches with S.E.C.A.M.P. Icon

Automatic lights • Insulation around doors and windows

Plasma Gasification Turns Waste-to-Energy

Plasma gasification technology around the world and in the United States is developing fast and may very well provide the perfect way to divert MSW from landfill and produce valuable by-products. The approach of the 4R’s is not enough to achieve the necessary sustainability objectives, we must adopt an end of life cycle for waste and Plasma Gasification stands out as the most promising solution.

Click on the Ted TalkxMontreal video where Tom Whitton explains just how Plasma Gasification works to turn waste into energy by producing Synagas and other valuable by products and how it could possibly reduce our landfills.

Packaging World – Published on the Packaging World Website

By Bruce Welt, PhD, Contributing Editor – (2019, April) |
Packworld.com | view original article source here


Plasma gasification can enable circular economy sustainability for packaging

As we realize that the 3Rs approach is failing to achieve our sustainability objectives, plasma gasification stands out as the most promising solution.

As we realize that the 3Rs approach (Reduce, Reuse. and [selective] Recycle) is failing to achieve our sustainability objectives, plasma gasification stands out as the most promising solution. While gasification is a well-known process that has been used for centuries to produce fuel gas and chemicals, plasma gasification is a unique version of the process for its use of plasma to achieve the high process temperatures required to induce desired thermochemical reactions. Traditional gasification uses partial combustion of a uniform feedstock, such as coal or biomass, to generate process heat. Plasma provides temperatures useful for a robust, mixed-feed gasification, which is necessary for lightly sorted, single-stream municipal solid waste (MSW).

Plasma gasification of MSW produces three valuable and environmentally safe outputs, including syngas, metals and glassy rock. Plasma gasification is so effective that it is even used to render dangerous chemical weapons inert. In addition to MSW, plasma gasification is suitable for recovering materials from biomass, chemical hazardous waste, and biological waste, all of which pose their own environmental issues beyond post-consumer packaging waste in our communities. Increasing the availability of plasma gasification capacity promises to alleviate many intractable recycling and disposal issues related to solid waste and particularly those associated with the packaging and packaged goods industries.

What is plasma gasification?

Plasma for the plasma gasification process is obtained through two primary means, namely electrical arc and plasma torches. Electric arc plasmas are commonly used in metal foundries capable of melting hundreds of tons of iron and steel. Plasma torches create a plasma plume by forcing gas between electrodes. Plasma torches can achieve local arc temperatures in excess of 5,000°C.

As a thermochemical conversion process, the goal of plasma gasification is to break down organic materials to their basic elements and then recover them as a useful gas product, melt and recover metals, and to recover everything else within a vitrified rocky matrix.

Clean energy

The desired gaseous product is known as syngas. Syngas is a hydrogen-rich mixture of carbon monoxide and hydrogen that can be used as a chemical feedstock to produce hydrocarbons, biofuels, and/or plastics. Or, syngas can be used directly as a clean burning fuel to produce electricity. Syngas can produce clean and green electricity. The fate of all plastic packaging sent to plasma gasification is conversion to syngas. Plastic packaging materials are comprised mainly of Carbon (C), Hydrogen (H), and Oxygen (O). Regardless of the types of plastics fed into the process, all are converted to syngas along with other organic materials.

Metals and glassy rock (slag)

Plasma gasification process temperatures are sufficient to melt virtually all earthly materials, including metals and minerals. Metals may be recovered as ingots and minerals as vitrified glassy rock.

Since bulk metals and glass, such as cans, jars, and bottles, are easily recovered prior to the plasma gasification process, and these materials enjoy successful and sustainable recycling markets, these should continue to be recycled. However, consumer sorting, duplicate collection, and precise materials recovery operations are not necessary since plasma gasification can accept whatever “slips through.” Therefore, simple and inexpensive bulk sorting of single-stream MSW is all that would be required.

Rigid, semi-rigid, and flexible plastic packaging often contain embedded or attached metals such as bands, springs, bearings, foils, and metallization. The primary metals in packaging are steel and aluminum. MSW contains other commodity metals such as copper, brass, and zinc. If electronics waste is included, then there may be precious and rare earth metals. These materials will melt and collect in an agitated molten pool at the bottom of the plasma gasifier. The plasma gasification process benefits from this molten pool from improved heat transfer and thermal capacity. As excess material accumulates, it is poured off to create metal ingots and vitrified rocky slag. Depending on specific content and market conditions, these materials can either be subsequently processed to recover purified components or used directly in a variety of applications.

One of the most promising aspects of plasma gasification is its robustness in terms of being able to accept the full spectrum of packaging materials including different metals, silicones, different plastics, and fiber regardless, of package structure. With plasma gasification, all materials are recoverable in environmentally-safe and useful forms.

Recycling is not enough

While the 3Rs play an important role in terms of material use efficiency and raw materials stewardship, they will never be capable of solving problems with waste. Many packaging materials simply cannot be recycled without suffering degradation. Even if recycling was not stymied by complex and often unsuccessful sorting and collection, recycled and repurposed materials ultimately reach end-of-life. Many important packaging materials, such as multilayer plastic films, metallized films, and laminates containing foils and fiber, are not recyclable using other methods. Even with traditional recycling, we need a way to recover materials that can no longer serve their functions and ultimately become waste.

Landfilling, composting, and incineration

Currently, the primary outlet for waste is landfill. Other options exist, such as composting and incineration, but of all available options, only plasma gasification can achieve circular economy sustainability. For the case of composting, except for biomass compost, MSW-derived compost is often contaminated and environmentally harmful as a soil amendment. The composting process also releases gaseous emissions, but without energy recovery, which is wasteful. Incineration recovers energy from waste through combustion but requires highly sorted and refined feedstocks, affectionately known as refuse derived fuel (RDF). Incineration produces ash, which is often toxic, as well as complex exhaust that must be treated against ever tightening emissions regulations.

Closing the loop by replacing fossil fuel

As the packaging industry increasingly sources plastic from renewables such as sugarcane, emissions become increasingly “zero-net-carbon.” Additionally, fossil fuel use is offset by clean energy produced via plasma gasification. The greatest energy efficiencies are achieved when syngas is used to power combined cycle turbines. Combined cycle involves a gas fired turbine, which produces electricity and heat. Heat is then used to produce steam to drive a second turbine to produce even more electricity. Modern power plants make use of combined cycle power. It is estimated that about 15% to 20% of our energy needs can be met using plasma gasification. Ultimately, plasma gasification systems can mine waste from existing landfills, restoring land for better uses.

Ocean litter is mainly a product of relatively poor island nations that import both fuel and packaged goods. Availability of plasma gasification in these nations will reduce their need for expensive fuel imports, simplify waste collection, and convert waste into clean energy instead of ocean litter. Savings in fuel imports provide a means and incentive to improve waste collection in order to maximize clean energy production from MSW using plasma gasification.

All Canadian Hemp Seeds a Nutracis product you buy from BevPaQ LLC reduces your Carbon Footprint. For example, every time you buy a 250g / 8 oz pouch of Hemp Seeds you remove 50 lb. of CO2 from the air; more than what your car produces in three days.

Plastics mindset shift as an important fuel

A significant consequence of adoption of plasma gasification for recovering materials from MSW is the anticipated ironic change in perception of the value of energy-rich packaging materials such as plastics. This demands important consideration by packaged goods companies that are currently investing in ways to reduce or eliminate energy-rich plastic packaging in favor of energy-poor materials. As plasma gasification is adopted, improvements to circular economy sustainability will come not by eliminating energy-rich packaging materials, but by preferentially choosing to use them. With plasma gasification, companies can then focus their packaging sustainability efforts on increasing the content of plastic produced from renewable sources.

Adoption of plasma gasification by municipalities will require education and outreach. The University of Florida is spearheading this effort by organizing an industry consortium around this theme as well as a Center for Research and Outreach. Packaging material suppliers and users are encouraged to join this consortium in order to support development and dissemination of science-based information to the public and community leaders in order to promote adoption of plasma gasification as the best choice for communities to treat MSW.

Bruce Welt, Ph.D., is a professor at the University of Florida/IFAS, Packaging Engineering Program.

 

When you’re committed to a greener environment, Flexible Pouch Packaging is a leap in the right direction.

Pouches when compared to conventional packaging such as glass or aluminum:

  • Consume less energy and fewer natural resources.
  • Generate 45% less CO2 emissions.
  • Result in higher product to package ratio.
  • Require fewer trucks for transportation, using less fuel and creating less emissions.

When you’re committed to a greener environment,

Flexible Pouch Packaging is a leap in the right direction.

Pouches when compared to conventional packaging such as glass or aluminum:

Consume less energy and fewer natural resources.

Generate 45% less CO2 emissions.

Result in higher product to package ratio.

Require fewer trucks for transportation, using less fuel and creating less emissions.

When you succeed, we succeed

Please fill out the contact form and let’s get the conversation started

About how we can together form a profitable partnership with you.